Главная / Медицинские статьи / Фармакология и фармация /

Взаимодействия компонентов витаминно–минеральных комплексов и рациональная витаминотерапия


Е.В. Ших

В настоящее время витаминные комплексы находят все более широкое применение в технологиях восстановительной медицины для коррекции функциональных состояний и повышения резервных возможностей человека при воздействии неблагоприятных факторов окружающей среды.

Гиповитаминозный фон отягощает течение основного заболевания и снижает эффективность терапевтических мероприятий. В связи с этим лечение пациента должно включать в себя коррекцию имеющегося поливитаминного дефицита и поддержание оптимальной витаминной обеспеченности организма [12,14,17]. По данным статистических исследований, как врачи, так и пациенты отдают предпочтение витаминно–минеральным комплексам, содержащим максимальное количество компонентов .

Стремление принять одновременно всю необходимую организму суточную дозу всех витаминов и минералов может привести к тому, что это существенно затруднит достижение конечной цели (профилактика и/или лечение определенных симптомов). Во многом это объясняется взаимодействием компонентов, что приводит к частичной или полной потере активности. Данные литературы и полученные нами результаты собственных исследований подтверждают, что относительно витаминов имеют место все известные виды лекарственного взаимодействия: фармацевтическое взаимодействие – до введения в организм внутри самой лекарственной формы; фармакокинетическое – на различных стадиях фармакокинетики; фармакодинамическое – на этапе взаимодействия с рецепторами [9,10,11].

Фармацевтическое взаимодействие – результат физико–химических реакций витаминов между собой. Тиамина гидрохлорид окисляется под действием рибофлавина, давая тиохром с образованием хлорофлавина. Оба могут выпадать в осадок. Взаимодействие между тиамином и рибофлавином усиливается под действием никотинамида. Никотинамид существенно усиливает взаимодействие между цианокобаламином и тиамином. Никотинамид практически утраивает растворимость фолиевой кислоты. Растворимость рибофлавина так же усиливается никотинамидом. Добавление никотинамида в раствор аскорбиновой кислоты и натрия рибофлавина–u1092 фосфата увеличивает фотолиз последнего. Аскорбиновая кислота может в определенной степени предотвращать осаждение тиохрома, однако это может привести к еще большему образованию хлорофлавина [7]. Аскорбиновая кислота восстанавливает фолиевую кислоту. Фолиевая кислота является незаменимым кофактором при переносе одноуглеродных звеньев: например, метильные группы, поставляемые незаменимой аминокислотой метионином, необходимы для синтеза различных соединений – пуринов, пиримидина, тимина, аминокислоты серина, холина, карнитина, креатинина, адреналина и многих других. Для выполнения своей функции фолиевая кислота должна находиться в восстановленной тетрагидрофолатной форме, и это состояние обеспечивается и (или) поддерживается в присутствии аскорбиновой кислоты. Рибофлавин усиливает аэробное разрушение аскорбиновой кислоты. Аскорбиновая кислота в растворе уменьшает период полураспада тиамина [7]. Фолиевая кислота разрушается под действием тиамина. Эргокальциферол подвергается изомеризации под воздействием аскорбиновой кислоты, тиамина гидрохлорида.

Химическое взаимодействие витаминов более выражено в жидких лекарственных формах, чем в твердых. Существует несколько методов предотвращения химического взаимодействия между витаминами в жидких лекарственных формах: использование двухкамерных ампул, лиофилизация; для препаратов, используемых для перорального приема – приготовление оральных порошков или растворимых гранул. В твердых лекарственных формах легче избежать взаимодействия, используя некоторые витамины (например, цианокобаламин), заключенные в желатин, вместо чистой субстанции. Уменьшение содержания воды так же способствует снижению вероятности химического взаимодействия. Другая возможность – использование многослойных или ламинированных таблеток, а также заключение отдельных витаминов в покрытия или капсульную оболочку [4,6,11,14]. Включение микроэлементов в витаминные продукты также часто приводит к проблемам со стабильностью, так как некоторые из них являются тяжелыми металлами, которые катализируют окислительное разрушение некоторых витаминов. Для повышения стабильности лекарственной формы идут на изготовление отдельных гранул витаминов и микроэлементов, а затем объединение их в обычную таблетку, двухслойную или ламинированную таблетку. Одной из актуальных проблем фармации является разработка мультивитаминного продукта, который был бы предельно стабильным и была бы возможность комбинировать его с микроэлементами. С точки зрения сохранения стабильности создание водных растворов витаминов более сложное, чем твердых лекарственных форм. Именно этим объясняется предпочтение, отдаваемое таблеткам, капсулам, растворимым гранулам, двухкамерным ампулам и лиофилизатам. Большинство публикаций о мультивитаминных продуктах не раскрывают сложность проблемы, а лишь освещают ее отдельные аспекты. Наиболее стабильными мультивитаминными формами, по–видимому, являются мягкие желатиновые капсулы и таблетки, покрытые сахарной оболочкой. Однако изменение формы выпуска такого препарата не исключает возможности взаимодействия компонентов в организме пациента[2,3]. Накопленные сведения по взаимодействию витаминов позволяют избежать антагонизма путем разделения взаимодействующих компонентов по разным таблеткам и, наоборот, усилить синергизм действия путем соединения взаимодействующих компонентов в одной таблетке. Таким образом, суточная доза витаминов поступает в организм за несколько приемов. Даже незначительное количество ионов таких элементов, как железо, кобальт, медь, магний, никель, свинец, кадмий оказывает каталитическое воздействие на окислительное разрушение многих витаминов. Чувствительными к металлам являются следующие витамины: ретинол и его эфиры, рибофлавин, пантотеновая кислота и ее соли, пиридоксина гидрохлорид, аскорбиновая кислота и ее соли, фолиевая кислота, холекальциферол, эргокальциферол, рутин.

Большие ежедневные дозы приема витамина С ухудшают усвоение витамина В12 из пищи или пищевых добавок. Недостаток в рационе витамина Е способствует развитию гиповитаминоза А. Витамины В1, В2, В6 способствуют образованию ниацина из аминокислоты – триптофана. Использование для энтерального приема поливитаминного комплекса приводит к уменьшению всасывания входящих в него витаминов С, В6 по сравнению с монокомпонентными препаратами. Кроме того, известно отрицательное влияние меди, железа и марганца на витамин В12, меди на аскорбиновую кислоту, железа на витамин Е [4,5,7,13,21]. Из 92 природных элементов 81 обнаружен в организме человека. Все элементы поступают в организм человека из внешней среды. 36 элементов имеют клиническое значение для состояния организма человека, при этом 15 из них являются «эссенциальными» – снижение их содержания в организме или отсутствие сопровождается определенной клинической картиной. Наиболее часто в состав витаминоминеральных комплексов включают макроэлементы (кальций, магний, фосфор) и микроэлементы (железо, медь, йод, селен, хром, цинк и марганец). Взаимоотношения между этими элементами складываются не просто: часть из них конкурирует с другими на путях всасывания, некоторые находятся в антагонистических отношениях на уровне рецепторов [1,3,4]. Для оценки реальной клинической значимости биологического синергизма и антагонизма необходимо учитывать, что «конкуренция за всасывание» обозначает, что один элемент, в высокой концентрации поступивший с пищей и водой, мешает абсорбироваться другому элементу (в меньшей концентрации). После прохождения этапа желудочно–кишечного всасывания в систему гомеостаза элементы могут взаимодействовать между собой на биологическом уровне независимо от взаимодействия при абсорбции. Конкуренция за мишень–лиганд может приводить и к синергизму, и к антагонизму по конечному результату физиологического эффекта. Кальций конкурирует за всасывание с железом, медью, магнием, свинцом; магний – с кальцием и свинцом; медь – с цинком, марганцем кальцием, кадмием. Фосфаты ухудшают всасывание кальция, магния, меди, свинца. Железо является антагонистом цинка, конкурирует за всасывание с кадмием, медью, свинцом, фосфатами, цинком. Кадмий конкурирует за всасывание практически со всеми макро– и микроэлементами, наиболее часто включающимися в комплексы, и является их антагонистом. Всасыванию кадмия препятствуют цинк, медь, селен, кальций. На уровне рецепторов взаимодействие этихэлементов проявляется антагонизмом: избыток кадмия приводит к дефициту цинка, меди, селена, кальция [4,3]. На основании этих данных встает вопрос о целесообразности одновременного приема всех необходимых элементов в одной таблетке .

Разделение суточной дозы необходимых организму элементов на несколько таблеток, их прием в течение суток с соблюдением временного интервала позволит избежать нежелательного взаимодействия и усилить благоприятные эффекты. В настоящее время накоплено достаточное количество информации, позволяющей достоверно утверждать, что существует ряд синергических взаимодействий витаминов и макроэлементов, без учета которых невозможно создать эффективные при лечении отдельных патологий витаминно–минеральные комплексы. Понимание механизмов этого взаимодействия позволяет практическому врачу в условиях большого количества присутствующих на современном фармацевтическом рынке препаратов наиболее рационально выбрать витаминно–минеральный комплекс для профилактики и/или лечения определенного патологического состояния. Классическим примером такого синергизма является взаимодействие кальция и витамина Д3. Витамин Д можно рассматривать как прогормон, из которого в организме образуется несколько активных метаболитов, обладающих свойствами гормонов. В печени витамин Д3 превращается в 25–(ОН)Д3, который в основном и содержится в крови. Эта форма в процессе кишечно–печеночного кругооборота реабсорбируется в кишечнике. В почках и некоторых других органах 25–(ОН)Д3 подвергается дальнейшему гидроксилированию с образованием гораздо более активного метаболита – 1,25–(ОН)2Д3 (1,25–дигидроксихолекальциферол или кальцитриол). Часть 1,25–(ОН)2Д3 в тонком кишечнике под контролем эстрогенов переходит еще в одну форму витамина 24,25–(ОН)2Д3, который уже на уровне кортикальной ткани костей стимулирует трансформирующий фактор роста остеобластов (B–ТФР) и приводит к фиксации фосфатов и кальция обратно в костную ткань. При этом B–ТФР активизирует эстрогеновый блок деятельности остеокластов.

Избыточно высокая концентрация кальция и фосфатов служит сигналом для включения дополнительной регуляции кальцитонином, который с помощью инсулина усиливает фиксацию кальция и фосфатов остеобластами, дополнительно к эстрогенам стимулирует в тонком кишечнике образование 24,25–(ОН)2Д3, и блокирует всасывание кальция и фосфатов. Одновременно идет сигнал для выключения работы паратирина как со стороны высокого уровня кальция и фосфатов в крови, так и по шунтирующему пути обратной регуляционной связи со стороны и 24,25–(ОН)2Д3. Наоборот, снижение концентрации кальция и фосфатов служит сигналом для выключения кальцитонина и включения паратирина, который индуцирует массивное образование 1,25–(ОН)2Д3 и одновременно блокирует 24,25–(ОН)2Д3 [16]. Дефицит витамина Д, возникающий при недостаточном его потреблении с пищей или недостаточном солнечном освещении, при печеночной патологии приводит к развитию гипокальциемии. При этом физиологический ответ организма – увеличение секреции гормона паращитовидной железы не приводит к желаемому эффекту, так как при недостаточном содержании кальцитриола не проявляется мобилизация кальция из костной ткани под влиянием паратгормона. Нарушение всасывания кальция в кишечнике предрасполагает к развитию гиповитаминоза Д, который, в свою очередь, может привести к гипокальциемии или усугубить уже имеющуюся [4,6,9]. Гиперкальциемия иногда наблюдается у пациентов, перенесших трансплантацию почек, в связи с тем, что некоторое время после операции уходит на восстановление метаболической функции. С другой стороны, гипервитаминоз Д может вторично приводитьк гиперкальциемии. Установленным является факт, что у спасателей водных станций образование кальциевых камней в почках наблюдается в 110 раз чаще, чем у жителей той же местности, но других профессий. Выяснилось, что это связано с длительным пребыванием спасателей на солнце. В результате длительного пребывания на солнце в их коже происходит усиленное образование витамина Д, а затем вторично возникает гиперкальциемия.

Широко используется в практической медицине совместное введение витаминов В12 и фолиевой кислоты с ионами железа. Доказано, что результатом взаимодействия этой комбинации является улучшение процессов кроветворения [15,18,19]. Витамин С оказывает сберегающее действие на витамин Е и ?–каротин, защищая их от разрушения свободными радикалами. Витамин С является протектором редуктазы фолиевой кислоты, участвует в распределении и накоплении железа. Антиоксидантное действие витамина Е потенцируется при сочетании с аскорбиновой кислотой, ретинолом, флавоноидами. Метаболизм витамина Е тесно связан с селеном. Действие этих антиоксидантов синергично [7]. Витамин В1 обладает С–витаминсберегающей функцией и создает более благоприятные условия для использования витамина С ферментными системами организма [7]. Рибофлавин необходим для превращения триптофана в никотиновую кислоту и пиридоксин. Биотин является синергистом витаминов В2, В6, А, никотиновой кислоты [14,17,20,21]. Накопленные данные по взаимодействию витаминов привели к созданию качественно новых витаминно–минеральных комплексов, в которых суточная доза принимаемых витаминов и элементов разделена на несколько таблеток, в каждой из которых состав укомплектован на основе сведений о положительном и отрицательном взаимодействии между компонентами в процессе их производства, хранения, усвоения в организме. Разделение комплекса на несколько приемов позволяет также максимально учесть хронофармакологические аспекты биологической доступности витаминно–минеральных препаратов. Так, известным является факт, что йод лучше всасывается утром. Предпочтительным является вечернее введение витамина Д в организм.

Максимальное поступление в костную ткань кальция и фосфора также отмечается во второй половине дня. Появление на фармацевтическом рынке новых витаминно–минеральных комплексов, таких как «Алфавит» и «Витаминерал», в которых суточная доза необходимых человеку микро– и макроэлементов разделена на несколько таблеток с учетом взаимодействия между собой, а также взаимодействия с витаминами, позволяет решить проблему «вместе или раздельно» разумным компромиссом. Правильный выбор препарата, его дозировка, влияние пищи на биодоступность компонентов, длительность применения, хронофармакологические аспекты, возможность одновременного применения с другими лекарственными средствами – предмет серьезных размышлений специалиста перед началом витаминотерапии, которая является достаточно сильным инструментом не только в обеспечении жизнедеятельности больного, но и в улучшении качества жизни здорового человека.

Литература

1. Авцын А.П., Жаворонков А.А., Риш М.А., Строчкова Л.С. Микроэлементозы человека: этиология, класификация, органопатология.–М.: Медицина, 1991.496 с.
2. Балткайс Я.Я., Фатеев В.А. Взаимодействие лекарственных веществ (фармакологические аспекты).–М.: Медицина, 1991.–304 с.
3. Блинков И.Л., Стародубцев А.К., Сулейманов С.Ш., Ших Е.В. Микроэлементы: Краткая клитническая энциклопедия, Хабаровкс, 2004, С. 210
4. Витамины и минеральные вещества:Полная энциклопедия (Сост. Т.П. Емельянова., СПб., ИД « Весь», 2001, 368 с.
5. Головкин В.А., Дуева О.В., Стец В.Т и др. Особенности фармакокинетики витамина Е при экспериментальном, остром гепатите // Фармацевтический журнал.– 1989.–№ 6.– С. 59–62.
6. Горбачев В.В., Горбачева В.Н. «Витамины. Микро– и макроэлементы» Справочник, Минск, «Книжный Дом» 2002 г.
7. Девис, Дж. Остин, Д.Патридж «Витамин С химия и биохимия» Москва «Мир» 1999.–стр.176
8. Идз Мэри Дэн Витамины и минеральные вещества: Полный медицинский справочник – 2–изд. – СПб.: ИК «Комплект», 1996. – С.503.
9. Кукес В.Г., Тутельян В.А. «Витамины и микроэлементы в клинической фармакологии» Москва, Палея–М 2001 г. стр.489
10. Кукес В.Г., Фисенко В.П. Метаболизм лекарственных средств.– Москва,–г.2001,– стр. 176
11. Спиричев В.Б. Сколько витаминов человеку надо. М., 2000, С. 174
12. Тутельян В.А. «К вопросу коррекции дефицита микронутриентов с целью улучшения питания и здоровья детского и взрослого населения на пороге третьего тысячелетия» «Ваше питание», № 4, 200 г. стр.6–7
13. Ших Е.В. «Витаммнный статус и его восстановление с помощью фармакологической коррекции витаминными препаратами».Диссерт. докт.мед.наук.–Москва, 2002, –с.264
14. Ших Е.В. Клинико–фармакологические аспекты применения витаминных препаратов в клинике внутренних болезней / МЗ РФ Ведомости Научного центра экспертизы и государственного контроля лекарственных
средств. – 2001г. – № 1 (5). – С. 46–52
15. AHFS DRUG Information (1994)American Hospital Formulary Service–Drug Information 94 (Mc Evoy GK, Ed). Bethesda MD. American Society of Hospital of Pharmacists, Inc (EGVM)
16. Ensminger A.H., Ensminger M.E, Konlande J.E. and Robson J.R.K(1995)Calcium. In: The Concise Enciclopedia of Foods and Nutrition, pp 137–143. CRC Press, 1995 (EGVM)
17. Frank T., Bitsch R., Maiwald J. et al. Alteration of thiamine pharmacokinetics by end–stage renal disease // Int. J. Clin. Pharmacol. Ther.–1999.– Sep.–V. 37.– №– 9.– P. 449–455.
18. Herbert V/ Staging vitamin B12(cobalamin) status in vegetarians/ American Journal of Clinical Nutrition, Vol 59, 1213S–1222S (PKN)
19. Interaction of Iron with Other Nutrients Sean R. Lynch, M.D.Nutrition Reviews, Vol.55, 4, april 1997: 102–110
20. Madigan S.M., Tracey F., Mc Nulty H et al. Riboflavin and vitamin B6 intakes and status and biochemical response to riboflavin supplementation in free–living elderly people // Am. J. Clin. Nutr. –1998.–V. 68.– №2. – Р.389–395.
21. Martin A., Janigian D., Shukitt Hale B et al. Effect of vitamin E intake on levels of vitamins E and C in the central nervous system and peripheral tissues: implications for health recommendations // Brain.Res.– 1999.– №. 845.– №1. – Р.50–59.
22. Sampson D.A., O’Conner D.K. Analysis of B2 vitamins and pyridixic acid in plasma, tissues, and urine using HPLC // Nutr.Res.– 1989.– № 9. – Р.259–263.